Shims for Cost Reduction

Shims for Cost Reduction

Content of Presentation

Shim Rings:

Explanation of Cost Reduction

Over the Whole Process Chain

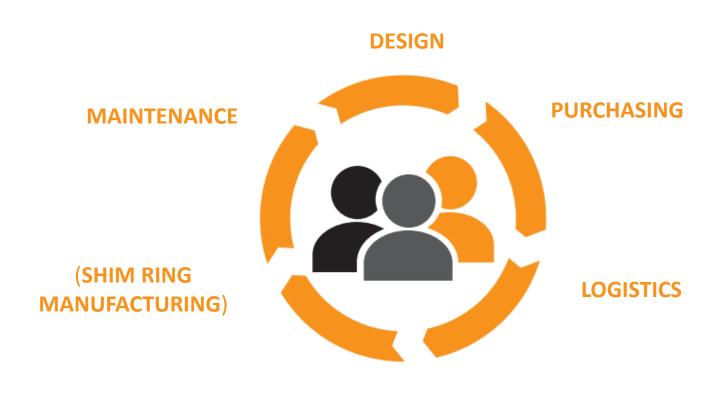
Why to

Differentiate Shim Types

Design Tips for Assemblies:

Where to

Use Which Shim Type



Shims for Cost Reduction

Cost Reduction

Over the Whole Process Chain

SUB ASSEMBLY + BEARING MOUNTING

Shims for Cost Reduction

Partner for Precision

Key information about

Georg Martin GmbH

Adjusting the AGB LEAP1-B's conical torque.

Copyright:

Thierry Mamberti / Hispano-suiza / Safran

Caption :

Adjusting the AGB LEAP1-B's conical torque at Hispano-Suiza Assembly Line in Colombes

Shims for Cost Reduction

Shims for Cost Reduction

Adjusting the AGB LEAP1-B's conical torque.

Copyright:

Thierry Mamberti / Hispano-suiza / Safran

All information and visuals belong to

Caption:

Adjusting the AGB LEAP1-B's conical torque at Hispano-Suiza Assembly Line in Colombes

Shims for Cost Reduction

Key information about

Georg Martin GmbH

Founded: 1945

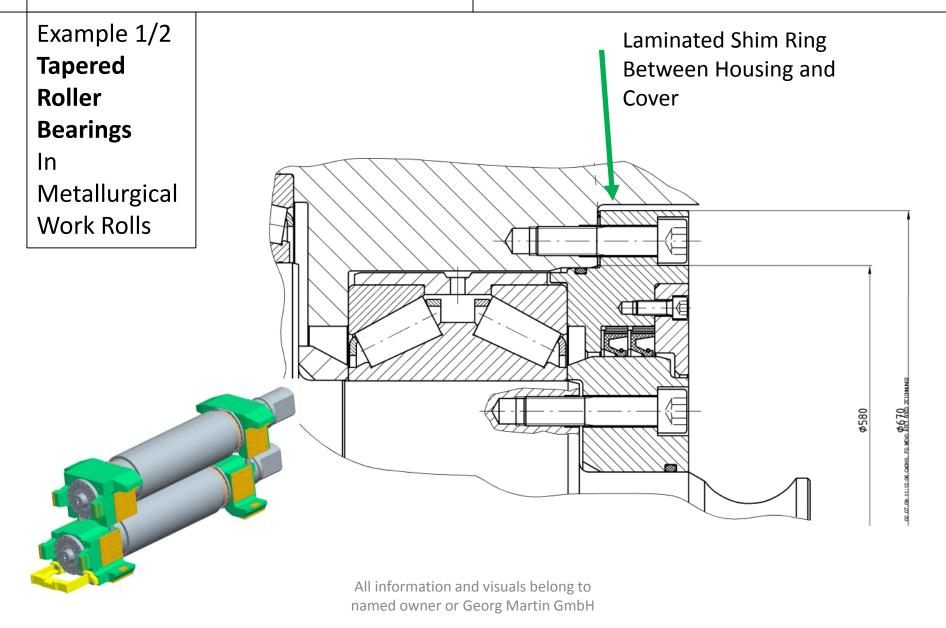
Family owned

95 Employees

Turnover: 10,6 Million Euro

Product & Services: Metal Forming Parts, Sub Assemblies And Shims

USP: Laminated Shim Manufacturing Germany


Industry Sectors: General Industries, Mechanical Power Transmission & Aviation

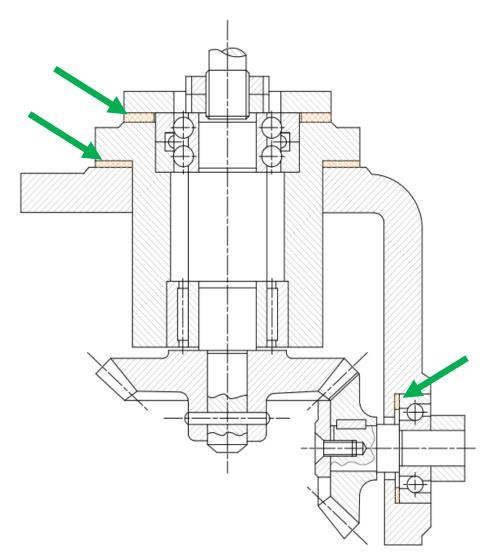
Approvals: AIRBUS GROUP, Rolls Royce, UTC, SAFRAN, Voith, div. Gear Box Manf.

Certifications: EN 9100 (Aviation) & ISO 14001 (Environment)

Shims for Cost Reduction

Shims for Cost Reduction

Example

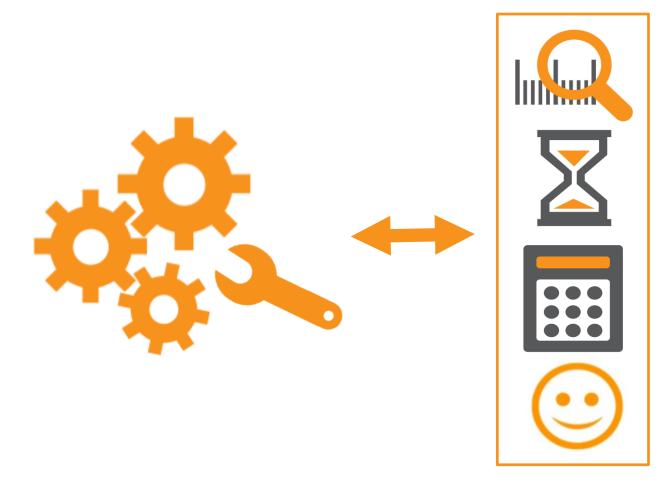

2/2

Ball

Bearings

In

Gearboxes

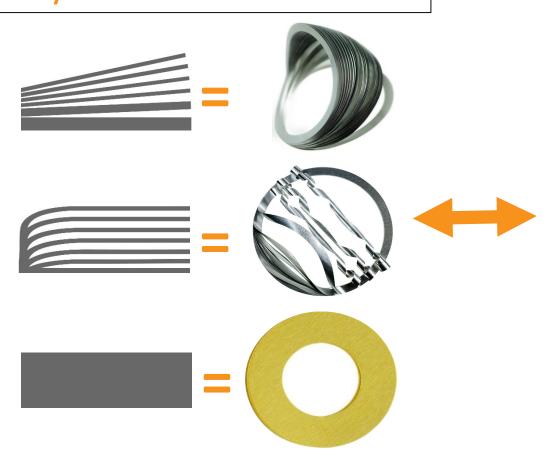


Shims for Cost Reduction

Partner for Precision

Assembly and Total Cost of Ownership

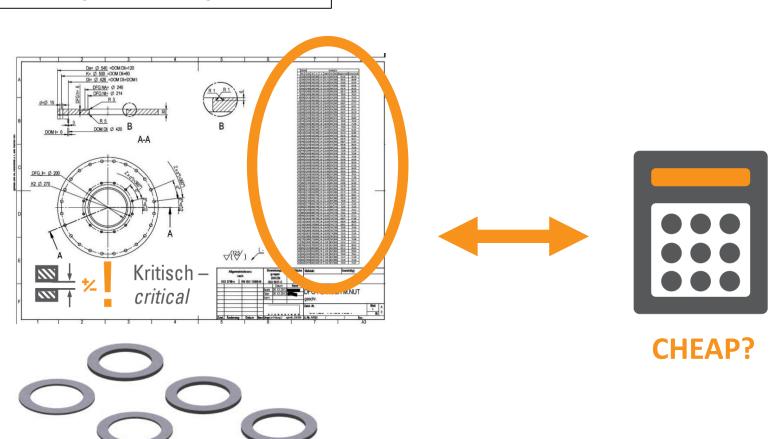
Assembly & TARGETS - Objectives



Shims for Cost Reduction

Assembly and TCO

Choice of Material Structures → Assembly TARGETS

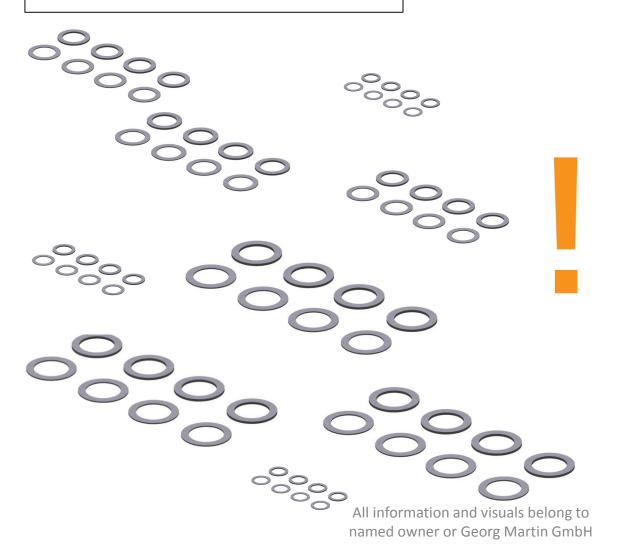


Shims for Cost Reduction

Partner

Practical Design

TCO / Complete Life Cylce Cost


named owner or Georg Martin GmbH

Shims for Cost Reduction

Partner for Precision.

Logistic (& Manufacturing) Costs

Over the Whole Process Chain

Solid Shim RingsWith Fixed Thicknesses:


- Stock Control
- ChaoticConsumption(Consumption Driven)

Shims for Cost Reduction

Manufacturing and Logistic Cost

Over the Whole Process Chain

Shims for Cost Reduction

Partner for Precision.

Manufacturing Cost

Over the Whole Process Chain

Production Planning

Shims for Cost Reduction

Influences of Cost

Conclusion: Overall Approach & Choice

Technical Requirements

Environment

Shims for Cost Reduction

Material Structures

Differentiate Aspects: P

- ✓ Lift Foils With Fingers
- **✓** High temperatures
- √ Fast Handling
- **✓** Free Combinations
- ✓ Different Materials
- **✓ Different Thicknesses**
- ✓ Min. 0,025
- ✓ Curved Surfaces
- ✓ Demand Driven
- ✓ One Piece Flow

Shims for Cost Reduction

Partner for Precision.

Material Structures

Differentiate Aspects: P

M-Tech®P "Packet" Con's:

- Sealing aspect
- Very Tough Load conditions
- Shear forces

Shims for Cost Reduction

Material Structures

Differentiate Aspects: P

M-Tech®P "Paket" Layer Connections:

✓ New: Laser Welded Connection

Shims for Cost Reduction

Material Structures

Differenciate Aspects: L

M-Tech[®]L "Laminated" Pro's:

- ✓ MARTIN Peel Tool®
- ✓ Sealing Advantages
- ✓ Demand Driven
- √ High Reliablity
- ✓ Solid Sections Possible
- **✓** Different Foils Possible
- ✓ Min. Foils: 0,010mm
- ✓ Easy to Measure
- ✓ Demand Driven
- ✓ One Piece Flow

Shims for Cost Reduction

Material Structures

Differenciate Aspects: L

M-Tech[®]L "Laminated" Con's:

- Dynamic Loads
- Temperature >> 200°C
- Harsh Friction
- Intense Shear Forces

Shims for Cost Reduction

Partner for Precision.

Material Structures

Differenciate Aspects: L

M-Tech[®]L "Laminated" Layer Connections:

- ✓ Fully Laminated for Temporarily Connection
- ✓ Glued for Permanent Connections Between Laminated Sections On Solid Rings Elements

Shims for Cost Reduction

Partner for Precision

Material Structures

Differenciate Aspects: S

M-Tech®S "Solid" Pro's:

- ✓ All mechanical Load Types
- √ Temperatures >> 200°C
- **✓ Parallelity Demands**
- ✓ Shear Forces
- ✓ Single Foils Thickness min. 5 μm

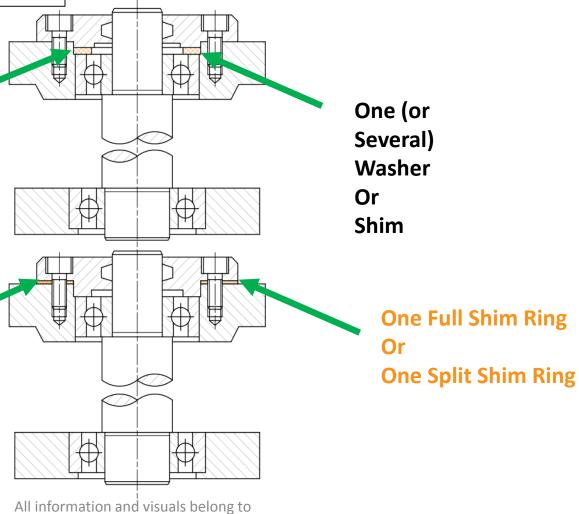
Shims for Cost Reduction

Partner for Precision.

Material Structures

Differenciate Aspects: S

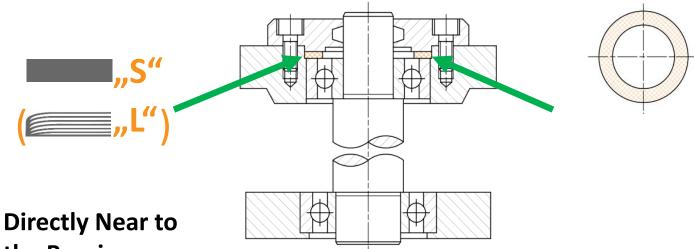
M-Tech®S "Solid" Con's


- Process Costs
- Maintenance Processes
- Hidden Costs
- Foil Handling in Assembly
- Measuring Foils
- Consumption Driven
- Or Expensive Single Piece Production

Shims for Cost Reduction

Design Tips for Assemblies

Where to Use Which Shim Type

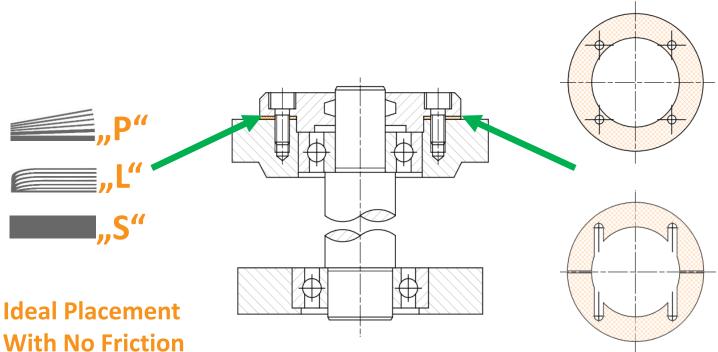

named owner or Georg Martin GmbH

Shims for Cost Reduction

Partner for Precision

Design Tips for Assemblies

Where to Use Which Shim Type

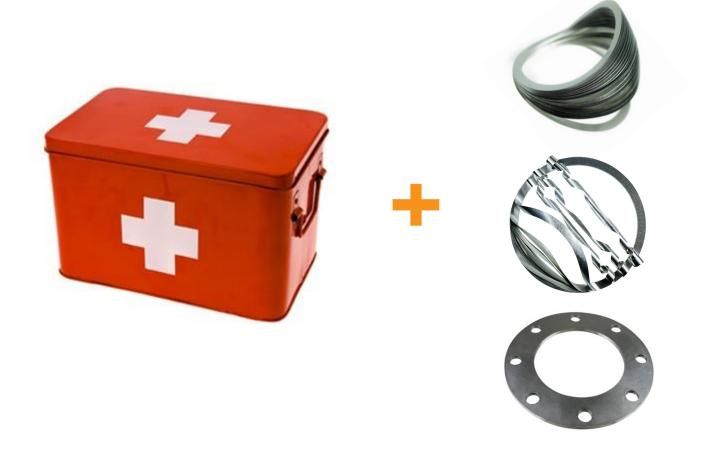

Directly Near to the Bearing: Can Bring Wear and Friction Problems Over Life Time

Shims for Cost Reduction

Partner for Precision

Design Tips for Assemblies

Where to Use Which Shim Type

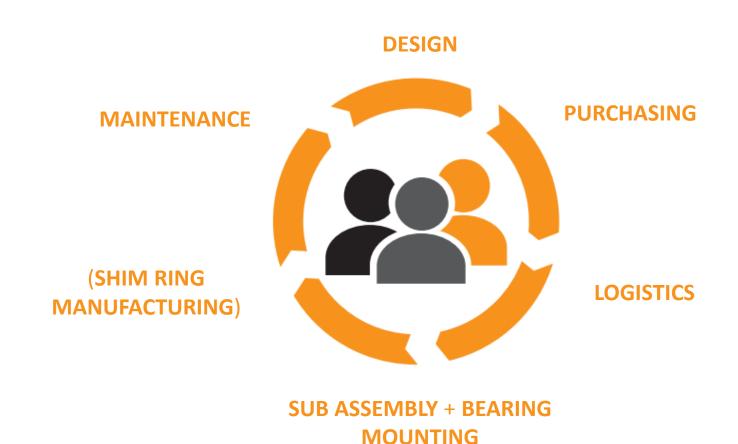

Ideal Placement
With No Friction
As Almost Static
Load Condition.
No Interference
With Bearing.

Shims for Cost Reduction

Partner for Precision.

Shims...

a "last" aid for designers?? or...



Shims for Cost Reduction

Shims...

Are A Strategic Approach to Reduce Over all Process Costs!

Shims for Cost Reduction

Reasons for

Laminated and Paketed Rings

Sum – Up 1/2:

- Practical and Easy Design Processes
- Sum Tolerances of Bearings and Housing Will be Nullified
- Without Increasing the Production Cost of the Other Components
- Non-Automated Assemblies Will be Fast and Easy
- Assembly Process Can Take Place Regardless of the Location

Shims for Cost Reduction

Reasons for

Laminated and Paketed Rings

Sum – Up 2/2:

- No Invest in Machines
- Indirect Labor and Process Cost Reduced
- One Piece Flow
- Demand Driven instead Consumption (Chaotic) Driven Demand
- Easy Maintenance Assembly Processes
- Customer Satisfaction by Down-Time Reduction

Shims for Cost Reduction

Many Thanks for your Attention,

ENJOY YOURSELF © REDUCING OVERALL PROCESS COSTS!

Mr. Christoph Martin + 49 151 16142488

C.Martin@Georg-Martin.de www.Georg-Martin.de

Shims for Cost Reduction

Back Up Slides...

Back-Up Slides

- Material lists
- Mechanical pressure resistance information
- Example Calculation
- Temperature Information

Shims for Cost Reduction

Material Lists

Solid and Packed Materials

http://www.georg-martin.de/uploads/Produktspezifikationen/04%20Materialspezifikation_M-Tech_S.pdf Laminated Materials:

http://www.georg-martin.de/uploads/Produktspezifikationen/05%20Materialspezifikationen_M-Tech_L.pdf

named owner or Georg Martin GmbH

Partner for Precision

Appropriate

Pressure Load Types

Mechan. Load / Product type	Static	Dynamically swelling	Dynamically alternating
M-Tech®L and Laminum®			-
M-Tech®S	✓		√ (*)
M-Tech®P and Lamivario®			√ (*)

Subject to Changes. Depending On Assembly Conditions Tests Are Imperatively Suggested.

All information and visuals belong to named owner or Georg Martin GmbH

Shims for Cost Reduction

Temperature Indications

For Different Material Structures

Temperature / Product type	Up to 100°C	Up to 200°C	Over 200°C
M-Tech®L and Laminum®		✓ Only steel types	-
M-Tech®S	✓	✓ /(*)	√ / (*)
M-Tech®P and Lamivario®	✓ /(*)	√ /(*)	/(*)

Subject to changes. Depending on assembly conditions tests are imperatively suggested.

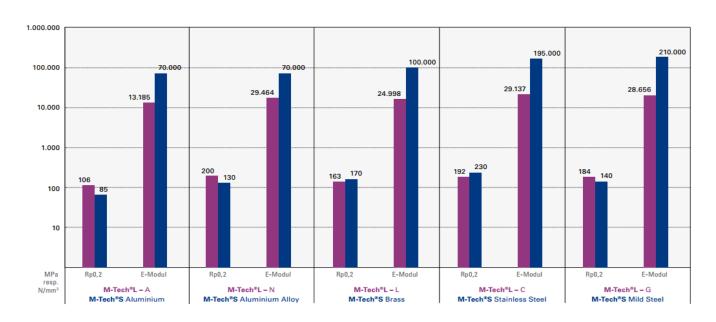
All information and visuals belong to named owner or Georg Martin GmbH

Shims for Cost Reduction

Pressure Resistance

For Different Material Structures

http://www.georg-martin.de/uploads/Produktspezifikationen/ENG/02%20martin_strength_values.pdf


MECHANICAL STRENGTH VALUES *
M-Tech® Laminated sheets with foil thickness of 0.05 mm

Page 2/4

COMPARISON: M-Tech®L 2,0 mm (foil thickness 0.05 mm) / M-Tech®S 2,0 mm (hard-rolled), see Page 4 for Rp0,2 resp. Rm values Test executed by the Staatlichen Materialprüfungsanstalt in Darmstadt, Germany (23.04.2008)

^{*} Technical information is subjected to change at all times

Subject to changes. Depending on assembly conditions tests are imperatively suggested.

All information and visuals belong to named owner or Georg Martin GmbH

Shims for Cost Reduction

Pressure Resistance

Example of Static Load Calculation

http://www.georg-martin.de/uploads/Produktspezifikationen/ENG/02%20martin_strength_values.pdf

$$\varepsilon_d = \frac{\Delta \ell}{\ell_0} = \frac{\ell_0 - \ell}{\ell_0} = \frac{\sigma_d}{E} = \frac{F_d}{E A}$$

 ℓ_0 = Height of sample 2,0 mm

 $\Delta \ell$ = Deformation by compression (searched)

E = E-Modul of M-Tech®L Sample, stainless steel type C

 σ_d = Yield point of M-Tech®L, Type C

$$\varepsilon_{d \text{ M-Tech}^{\Theta}L} = \frac{\sigma_d}{E} = \frac{192 \text{ MPa}}{29.137 \text{ Mpa}} = 0,0066$$

$$\varepsilon_d = \frac{\Delta \ell}{\ell_0} \Rightarrow \varepsilon_d \times \ell_0 = 0,0132$$
mm deformation by compression

Subject to changes. Depending on assembly conditions tests are imperatively suggested.

All information and visuals belong to named owner or Georg Martin GmbH